jueves, 18 de noviembre de 2010

MODELO DE REDES NEURONALES ART

Perceptrón



El Perceptrón es un tipo de red neuronal artificial desarrollado por Frank Rosenblatt, también puede entenderse como perceptrón la neurona artificial y unidad básica de inferencia en forma de discriminador lineal, que constituye este modelo de red neuronal artificial, esto debido a que el perceptrón puede usarse como neurona dentro de un perceptrón más grande u otro tipo de red neuronal artificial.

Definición


El perceptrón usa una matriz para representar las redes neuronales y es un discriminador terciario que traza su entrada x (un vector binario) a un único valor de salida f(x) (un solo valor binario) a través de dicha matriz.

Donde w es un vector de pesos reales y  w- x  es el producto punto (que computa una suma ponderada). u es el 'umbral', el cual representa el grado de inhibición de la neurona, es un término constante que no depende del valor que tome la entrada.

El valor de f(x) (0 o 1) se usa para clasificar x como un caso positivo o un caso negativo, en el caso de un problema de clasificación binario. El umbral puede pensarse de como compensar la función de activación, o dando un nivel bajo de actividad a la neurona del rendimiento. La suma ponderada de las entradas debe producir un valor mayor que u para cambiar la neurona de estado 0 a 1.